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Preamble -Definition, kinds and uses of noise 

Ordinarily speaking, noise is an unwanted sound but we can extend the definition of ‘noise’ beyond 

acoustics to the general field of information. Since almost any signal that is a function of time can be 

translated into a voltage, it is convenient to use the concept of a voltage signal. A ‘noisy signal’ is one 

that in addition to the expected voltage has an unwanted, typically (but not always) a randomly-

fluctuating, voltage. Surprisingly, the noise signal is sometimes not only wanted, but is the “essence 

of the measurement”.   

There are several kinds of noise. One of them is ‘interference’, which is the presence of an unwanted 

signal, added to the desired signal, for example a mobile phone interfering with the circuits in a radio. 

The kind of interference you are likely to encounter in these experiments probably comes from three 

sources: electrostatic coupling to the apparatus from fluorescent lights in the laboratory, 

electromagnetic coupling due to any nearby transformers or motors, and vibrational coupling due to 

microphonic components within the unit.  

Another source of noise we will call ‘technical noise’ since it is the noise generated by the technique 

of the investigation, or that gets into the circuits due to faulty experimental techniques. For example, 

failure to tighten the cover on the preamplifier section, or a poor electrical connection to the first-

stage op-amp, can add extraneous noise to the signal path.  

Of greatest interest in this experiment is ‘fundamental noise’, noise that is intrinsic and inevitable 

because of the physical nature of the apparatus. You will be observing Johnson noise, which arises 

from the Second Law of Thermodynamics. Noise sources like Johnson noise display the characteristics 

of non-periodic, unpredictable, random waveforms, but nevertheless conforming, in their statistical 

properties, to universal laws.  

Fundamental noise is especially worthy of study, for at least two reasons. The first reason is that 

fundamental noise presents us with a physics-based limit on the degree to which we can measure in 

a given experiment. In many cases in research and technology, it often defines what is possible within 

the limits of physical law. In particular, fundamental noise can and does set limits to the rate of data-

transfer in a host of contexts in communication. 

The second reason we care about noise is that it becomes possible to use noise to measure the values 

of some fundamental constants for example Boltzmann’s constant, 𝑘B, can be determined from the 

voltage or Johnson noise of resistors. 

However, measurement of ‘fundamental noise’ has its experimental challenges. There is a saying 

about noise measurements: ‘you are either measuring too much or too little signal’. In this practical 

you are going to investigate what “just the right amount” of noise is. 

 

1. Johnson noise at room temperature 

1.0 The reasons for Johnson noise, and its predicted size 

It is well known that 𝑉 =  𝐼 𝑅, which really says that there's a potential difference Δ𝑉 across any 

resistor 𝑅 which has a current 𝐼 passing through it. This of course predicts a Δ𝑉 of zero for a resistor 

with no current. But for deep reasons, any actual resistor at any temperature above absolute zero, 
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will display a ‘noise voltage’ 𝑉J(𝑡) across its terminals, a potential difference that has all the character 

of an internal (a.c.) emf built into the resistor. The electro motive force (emf) which the resistor 

generates is called ‘Johnson noise’, and it arises because of the deep thermodynamic connection 

between dissipation (which any resistor necessarily has) and fluctuations (which here show up as a 

fluctuating emf). The size of this emf is also predicted by fundamental theory, and it should not 

surprise you to learn that 𝑉J(𝑡) is, on average, zero. But 𝑉J(𝑡) exhibits fluctuations, positive and 

negative, about that average value of zero. To quantify these, we form the (always-positive) square of 

𝑉J(𝑡), and time-average that, giving a ‘mean square’ voltage which we denote as < 𝑉J
2(𝑡) >. The 

predicted value for < 𝑉J
2(𝑡) > was first deduced by Nyquist, following Johnson's empirical discovery 

of the noise, and it's given by the expression  

< 𝑉J
2(𝑡) > = 4𝑘B 𝑅𝑇Δ𝑓. 

Here 𝑘B is Boltzmann's constant, 𝑇 is the (absolute) temperature of the resistor, and Δ𝑓 is the 

‘bandwidth’ used in the measurement electronics. The involvement of bandwidth Δ𝑓 is a first hint that 

‘noise’ is quite distinct from ‘signal’. Everyone starts with ‘d.c. signals‘, which have nothing but a sign 

and a value, in Volts. Then there are ‘a.c. signals‘, which have a magnitude (perhaps specified by 

amplitude, or root-mean-square (rms) value, or peak-to-peak excursion) but also a frequency, or a 

mixture of frequencies. But it is the essence of fundamental noise that it contains, or is composed of, 

all frequencies. In fact, the amount of energy we can get out of a ‘noise source’ depends on the range 

of frequencies to which we arrange to be sensitive, and this is the reason for the inclusion of the 

bandwidth-factor Δ𝑓 in the expression above. 

Using Nyquist’s Theorem, how large a Johnson-noise voltage should we expect from a typical resistor? 

If you simply hooked up a 100kΩ room temperature resistor to an ideal voltmeter, and if that 

voltmeter responds to all (but only) frequencies under 100 kHz, then the voltmeter‘s instantaneous 

reading will not be zero volts, but instead will fluctuate around zero, with typical excursions of order 

±10𝜇𝑉. (What sort of time scale would you expect for fluctuations of this signal?)  This is an actual 

emf intrinsic to the resistor, and it will still be present, though typically unwanted, in addition to any 

𝐼𝑅-drop that the resistor may exhibit. It follows that measurement of any 𝐼𝑅-drop to microVolt 

precision in such a case would require thinking about this effect.  

Here's a ‘thought experiment’ to help you see that some sort of Johnson noise should exist. First 

imagine a cubic meter of iron at room temperature and another cubic meter of cold iron (say, at 

temperature 𝑇= 4 K), spaced 10 meters apart in empty space. (If you like, think of them as located at 

the two focal points of a large evacuated ellipsoidal reflecting cavity which surrounds them both, and 

isolates them from the external universe.) It should be clear to you that each iron block is giving off 

blackbody radiation, with a range of frequencies and in all directions -- but that the warm block is 

giving off a lot more. Since the blackbody radiation of each block will run into the other block, there 

will be a net flow of (radiant) energy from the warmer block to the colder one, and their temperatures 

will therefore start to equilibrate. Now imagine a 50Ω resistor at room temperature, connected to 

nothing but a lossless coaxial cable of 50Ω impedance; and imagine there is another 50Ω resistor, but 

down in a Dewar at 𝑇 = 4K, connected to the far end of this cable. If the coaxial cable is 

superconducting with zero thermal conductivity what happens to the temperature of the two resistors 

in the presence of only electrical conductivity. The ‘Johnson emf’ in each resistor still acts like a black-

body source, here generating travelling waves of (confined) radiation along the one-dimensional cable 

structure, and that ‘radiation’ is caught and dissipated in the far end’s resistor. This is the mechanism 

by which the two - resistors will tend toward thermal equilibrium, as the hotter resistor will experience 

a net outflow, and the colder a net inflow, of electrical energy.  



3 
 

1.1 ‘Seeing’ Johnson noise 

It is possible to see, directly on an oscilloscope, a time-dependent waveform which can be traced all 

the way back to the Johnson noise generated in a resistor. This is exactly what you will now do. 

Connect power to the High Level Electronics (HLE) box, which also provides power for the Low Level 

Electronics (LLE) box. 

Select a ‘source resistor’ of 𝑅in  =  100 kΩ in the pre-amplifier module of the LLE box. This resistor is 

connected only to the high-impedance input of the first stage of amplification in the pre-amp. That 

first stage (see Fig 1) is wired to give a ‘gain’, or amplification factor that depends on the feedback 

resistor (𝑅f). For a setting of say 1kΩ what gain would you expect? (The feedback capacitance 𝐶f is not 

connected in the default configuration, so its setting is irrelevant.) The graphics on the panel of the 

pre-amp shows that there is an additional amplification stage, with gain 100, following this first stage, 

what is the combined gain (𝐺1) for the preamp module? Now you can connect the pre-amp’s output 

with a coaxial cable, to an oscilloscope, to see any signal present. Use an appropriate vertical scale 

and sweep speed of around 5𝜇𝑠/div and a scope trigger near zero 

volts.  

Can you calculate/estimate approximate 𝑉J(𝑡) values? Why do 

you need the pre-amplifier?  

The wiring diagram for the required configuration is shown in Fig 

2. The connections indicated in thick grey lines are wires that can 

be reconfigured. (By contrast, connections shown in thin solid 

lines are already established for you on the printed- circuit 

boards.)  

Figure 2: Wiring diagram of the default configuration of the interior of the low-level electronics (LLE). 

Figure 1: Johnson noise preamplifier  
schematic 
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The signals you see emerging from the pre-amp are rather small. So next use a cable to connect the 

pre-amp output to the HLE box instead, where you can filter and amplify the still-small noise signals. 

Set up the arrangement show in Fig. 3, with a frequency band, extending from about 100 Hz to about 

100 kHz and AC coupling. The first filter is used as a high-pass and the second as a low-pass filter. After 

the output of the two filters, you have Johnson noise, pre-amplified by a known factor, and then 

filtered to pass only the 0.1k -100kHz frequency band. 

There is another stage of “main” amplification which you should set to give a gain of around 300. 

Finally, at the output of this main amplifier, you'll have a signal large enough to see easily on a scope. 

This is Johnson noise, due to thermal driven current fluctuations.  

Look at a few different Δ𝑓 bandwidths and 𝑅in resistances. You might like to save a few traces/screen 

shots. Note: If you are using Excel (or similar programs), they are designed for spreadsheets and may 

slow down considerably (crash) if many large data files are imported for viewing.  

To help convince yourself that this ‘noise signal‘ has something to do with the original source resistor 

at the front end of this pre-amp/filter/main-amp chain go back to the pre-amp, and try a few different 

𝑅in resistances. When you change 𝑅in by a factor 10 or 100 how much does the signal change? Follow 

the amplification chain and satisfy yourself that the size of the signal that comes out makes sense. 

In general measuring the intrinsic noise can be a really useful test when setting up sensitive 

measurement circuity. The background noise floor is always present and should match the expected 

value otherwise (a) something is wrong or (b) you have discovered new physics. Usually it means (a) 

and you can try fixing it before looking at your actual signal and getting on with (b). 

 

1.2 Quantifying Johnson noise 

You have hopefully just observed a rapidly-fluctuating signal on the oscilloscope which seems to be 

consistent with Johnson noise but you should now quantify it. The method described here executes 

quite directly, in analogue electronics, the very operation built into the mean-square definition of 

noise.  

You will be using the filters, amplifier, multiplier and output modules of the HLE box to implement this 

“mean-square” operation. For a moment ignore the two filter sections, (you may well be able to guess 

what they do) and instead connect a test signal from the function generator to the input of the Gain 

module of the HLE box. Try an input 1kHz sinewave, amplitude 0.5V and a module gain of 10, what 

output do you get? (Compare the input and output on Ch1 and Ch2 of the scope.) Now vary the input 

Figure 3: Cabling diagram for the high-level electronics. (left) Filter: selector to .1k,  (right) Filter: selector to l00k,  
(a.c. coupling for both filters). Gain Fine Adjust 30, toggle x1, toggle x10 



5 
 

amplitude and gain and note what you observe. Briefly describe (one or two sentences or a sketch) 

what the gain module does and if there are any (frequency or amplitude) limits to its operation. 

Connect a “suitable” test input signal from the function generator to the multiplier module. What does 

it do (use AxA)? Are there any limits to the input signal it can deal with? What does it produce with 0, 

1 & 2V input? Next look at the output module, this has an averaging effect. Use a square wave input 

signal (applied via the multiplier) and look at the effect of the time constant settings. What do the 

time constant numbers on the switch correspond to? 

Now back to quantifying John son noise. Connect up the equipment as shown in Fig 4. You can turn 

off the signal generator for now.  

As you have discovered at the MONITOR BNC (and also internally to the output module) the multiplier 

circuit delivers, a real-time output voltage  

𝑉out(𝑡) =  [𝑉in(𝑡)]2 (10V)⁄   

which still has dimensions Volts (due to the fixed ‘scale factor’ of 10 Volts in the denominator). With 

the preamp module and 𝑅in as they source look at 𝑉out(𝑡) on your scope, and notice that it is always 

positive, unlike your input noise signal 𝑉in(𝑡), which has a mean of zero. 

As a test further test that the squarer is working, use the XY-display capability on the scope. Connect 

the squarer‘s input 𝑉in(𝑡), both to the squarer and to the 𝑥-channel of your scope, and connect 𝑉out(𝑡) 

to the 𝑦-channel, and have a look at a real-time 𝑥𝑦 display. What do you see? See to it that you 

understand the origin of your 𝑥𝑦-coordinate system, and then try changing some things: What are the 

right sensitivities to choose on the two axes? What would happen to the shape on the scope if you 

raised the gain in the main-amplifier module of the HLE, try it and see? Why does your data lie on a 

parabola, after all? 

Now set the scope back to the normal 𝑦 vs time setting. Look at < 𝑉out(𝑡) >, the time-average of 

𝑉out(𝑡).  This time average is not zero, why? 

Connecting the output of this last stage to a digital multimeter allows you to move easily read <

𝑉out(𝑡) >, the needle gauge is just an indicator.  

How does the mean value of the meter reading (𝑉meter) relate to the quantity you want to find, namely 

the mean-square Johnson-noise voltage at the source resistor, < 𝑉J
2(𝑡) >? 

Why does the meter reading fluctuate, what effect do different averaging time constants have and 

what is the disadvantage (if any) of just measuring with the longest time constant?  

Fig. 4: Cabling diagram for multiplier used as squarer. High—pass filter 0.1 kHz; Low-pass filter 100kHz;  
Gain 400; multiplier AxA, (all stages a.c. coupled) 
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Are there any other contributions to this meter reading? Yes, as you will see in the next section. 

 

1.3 Observing and Correcting for Amplifier Noise 

You've now seen how all-analog electronics can take you from a Johnson noise source voltage 𝑉𝐽(𝑡) 

to a time-averaged d.c. voltage which is a traceable measure of < 𝑉𝐽
2(𝑡) >.  You will now see how to  

a) make that measurement optimally, and 

b) correct that measurement for amplifier noise. 

a) The noise measurements you perform all depend on the linear operation of the amplifiers, and they 

(like all analog electronics) have only a finite range of output voltages over which they remain linear. 

For the high level electronic amplifiers, that range is 

± 10V. If you were to put a simple sine wave through 

the amplifiers, you could use the full ± 10V 

excursions. But since you are amplifying noise, you 

have to ensure that even the rare large fluctuations of 

the noise stay within the ± 10V ‘span’ of the 

amplifier. In practice, a maximum average noise signal 

of 3 Volts (rms) is a safe choice. This should avoid 

serious distortion of the signal, called ‘clipping’, like 

that shown in Fig. 5. For an average noise signal of 3 

Volts rms, an excursion beyond ± 10V is so rare as not 

to spoil the accuracy of your measurement.  

Now if the rms measure of the signal at the A-input of the squarer, 𝑉A(𝑡), is 3 V, then (by definition) 

its mean-square value is  

< 𝑉A
2(𝑡) > = (3V)2 = 9 V2 , 

 and under these circumstances, the squarer's MONITOR output will give  

𝑉𝑠q(𝑡) = [𝑉A(𝑡)]2/(10V) 

 so that the time-average at the OUTPUT will be 

< 𝑉sq(𝑡) > = < 𝑉A
2 (𝑡) >/(10V)  =  (9 V2)/ (10 V)  =  0.9 V. 

 You could use a smaller rms size for the input 𝑉A(𝑡), but you'd be getting an even smaller output from 

the squarer, and your readings might be affected by the fact the squarer is not a perfect 𝑥2 operation, 

Think of the “zero offset” you measured in Section 1.2. What is < 𝑉sq(𝑡) > with 0V applied to the 

squarer input? 

From here onwards, whenever you measure a noise voltage, you should check the main-amp output 

to see that it fits easily into the ±10V range. If it exceeds these limits, reduce the gain. And you should 

look at the squarer's output on the HLE meter, to see a time-averaged output near, or a bit below, 1 

Volt. Again, if it's much larger, you want to reduce the gain, or if much smaller, raise the gain. 

Whenever you take a reading of the time-average of the squarer's output, note down the net gain you 

have used to attain that reading, since this is required to trace the meter reading back to the desired 

mean-square noise < 𝑉J
2(𝑡) >.  

Figure 5: A clipped signal, due to saturating amplifier in HLE 
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b) Now back to Johnson noise. The problem you are now going to address is tracing noise back to its 

source, because here you have to consider the possibility that some of the noise you're seeing is not 

due to the Johnson noise of the of source resistor, but instead  due to the amplifier chain which follows 

it. Since this ‘amplifier noise’ can be expected to be just as featureless and random as the resistor's 

Johnson noise, there's apparently no way to separate the two waveforms once they are added. But 

there is a way to separate their effects, if we can assume that the amplifier noise does not depend on 

the source resistor's value. Here is a demonstration: let 𝑉J(𝑡) be the instantaneous noise voltage from 

the source resistor, and let 𝑉N(𝑡) be the instantaneous noise voltage apparently present at the input 

of the amplifier. That is to say, 𝑉N(𝑡) is a model for a noise emf which, applied to the input of an ideal 

noiseless amplifier, would match the noise actually observed at the output of the real amplifier, driven 

only by its internal noise. If the gain of the amplifier is 𝐺, its output will be 

𝑉out(𝑡) =  𝐺[𝑉J(𝑡) +  𝑉N(𝑡)], 

and the mean-square of this output will be 

                   < 𝑉out
2 (𝑡) > =  𝐺2 < [𝑉J(𝑡) + 𝑉N(𝑡)]

2
  

= 𝐺2{< 𝑉J
2(𝑡) >  +2 < 𝑉J(𝑡) ∙  𝑉N(𝑡) >  + < 𝑉N

2(𝑡) >},   

 

There is a ‘cross term’ in this expression, the time average of the product 𝑉J(𝑡) ∙  𝑉N(𝑡), but this time 

average is zero. The reason is that 𝑉J(𝑡) and 𝑉N(𝑡) can be safely assumed to be uncorrelated, arising 

as they do from distinct physical mechanisms in two different objects. So when 𝑉J(𝑡) happens to be 

positive, the amplifier noise 𝑉N(𝑡) is just as likely to be negative as it is positive; thus the product of 

the two factors is also as likely to be negative as positive. That is why the absence of correlation 

enforces a zero for the time- average of the product. Therefore  

 < 𝑉out
2 (𝑡) > =  𝐺2{< 𝑉J

2(𝑡) >   +  0  +  < 𝑉N
2(𝑡) >} , 

 which says that mean-square voltages from uncorrelated sources are simply additive – like 

independent errors “adding in quadrature”. In particular, it gives us a way to measure the amplifier 

noise – we just change temporarily to a configuration in which the Johnson-noise term in this sum is 

negligible. Theory says that a choice of 𝑅 =  0 for source resistance would give < 𝑉J
2(𝑡) > =  0, but 

in practice, it is good enough to use the 𝑅 =  1Ω or 10Ω settings for giving a < 𝑉J
2(𝑡) > which is small 

enough that the result is a good measure of < 𝑉N
2(𝑡) >.  Once this amplifier noise value is measured, 

it can be assumed to be always present, and unchanged, in any use of (the some configuration of) the 

amplifier. This assumes negligible op-amp current noise, and no noise from external interference, both 

of which may actually depend on R.  

Create a table like that shown above and plot the data as you take it. After you have a number of 𝑅in  

and  < 𝑉J
2 + 𝑉N

2 > values you should be able to extrapolate to  0Ω to find < 𝑉N
2 > and hence finally 

derive estimates of the mean-square Johnson noise of the source resistor, corrected for the effects of 

amplifier noise. You should now correct for amplifier noise in all future measurements in the same 

way.  

𝑅in  chosen Gain 𝐺2 (HLE) < 𝑉sq > read < 𝑉J
2 + 𝑉N

2 > inferred < 𝑉J
2 > derived 

1Ω 1500 0.6353 V 7.843 x10−12 V2 ~0.002 x10−12 V2 
100Ω 1500 0.6516 8.044 0.203 
10kΩ 1000 0.9801V 27.225 19.384 

Note these are example values yours will be similar but not the same. 
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Notice that the amplifier-noise corrections are large, even dominant, for small values of source 

resistance. At what 𝑅in  are the amplifier and Johnson noise comparable?  

Note: when calculating < 𝑉J
2 + 𝑉N

2 > you will need to know both  𝐺1 and 𝐺2 (and don’t forget the 

factor 10V.) 

1.4 Johnson noise dependence on resistance 

In the previous sections you have seen how to configure the pre-amp/filter/main-amp combination, 

and how to select a gain for optimal use of the squarer. The results can also be corrected for 

amplifier noise, and traced back to an inferred mean-square measure of Johnson noise, < 𝑉J(𝑡) >, 

for any source resistor from 𝑅 =  10Ω upwards. You should now investigate systematically the 

dependence of < 𝑉J(𝑡) > upon source resistance 𝑅. To do so, you can use the 𝑅 =  10 Ω to 1MΩ  

choices built into the pre-amp module. (You can assume these internal source resistors have 

tolerances of 0.1% to 1 MΩ , and 1% thereafter.)  

The three extra positions on the selector switch, A, B, and C, can have other resistors connected. To 

change these you need to unscrew the four thumb screws on the LLE box and flip over the front 

panel to expose the back (component) side of the pre-amp's circuit board. You will find the pre-amp 

power switch (near the internal power-on red LED) inside the low-level electronics), and should turn 

OFF the pre-amp power before making any changes to the board.  

Find the screw-contact terminal strips and check or swap the resistors in positions  A, B, and C. 

You can try a variety of resistors and take noise data for these resistors, as well as for the built-in 

source resistors. As you measure < 𝑉J
2(𝑡) > values, each corrected for amplifier noise, you should 

plot these as a function of 𝑅. Since both axes will vary over many orders of magnitude, a log-log plot 

may be appropriate. 

Figure 6: Wiring diagram for adding components at the A, B, C, positions of the pre-amp's input. Note all input 
resistors have a common ground. 
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What are the units on the 𝑥 and 𝑦 axes?  Nyquist's theory predicts a first-power power-law 

dependence on resistance 𝑅, namely  

< 𝑉J
2(𝑡) > = 4𝑘B𝑇Δ𝑓 ∙ 𝑅𝛼   where 𝛼 = 1. 

To test whether this prediction is consistent with your data you will also need error estimates on 

your graph.  There will be deviations from this behaviour at the high-R end of the plot, for reasons 

you will look at next. 

At the low-resistance end of the plot, you'll see the amplifier-noise-corrected values enable you to 

follow Johnson noise to a regime well below the apparent limit set by amplifier noise. You'll be able 

to establish values of < 𝑉J
2(𝑡) > which are less than 1% of the amplifier noise < 𝑉N

2(𝑡) > that overlays 

them. Of course, the corrected value of Johnson noise will be the difference between two nearly equal 

quantities, what does this do to the uncertainties on these points. This would be a particularly good 

point to demonstrate appropriate use of error bars! 

 

1.5 Johnson noise dependence on bandwidth 

Thus far you've learned how to observe and quantify Johnson noise, and you've seen how to isolate 

its mean-square value from amplifier noise. You've also seen its dependence on source resistance 𝑅. 

But Nyquist's formula claims that < 𝑉J
2(𝑡) >  also depends on the bandwidth Δ𝑓 i.e. on the range of 

frequencies to which your system is sensitive. You should now investigate to see if this fits the 

experimental measurements at a fixed 𝑅-value (10kΩ is sensible choice) how the choice of bandwidth 

matters. The method is to imagine a ‘white noise spectrum’, i.e. noise power uniformly spread in 

frequency at its origin, but subsequently modified by the high-pass and low-pass filter sections in the 

HLE box.  

You have a range of choices for the ‘lower corner’ frequency 𝑓1 or high-pass filter setting, and a 

separate range of choices for the ‘upper corner’ frequency 𝑓2 or low-pass filter setting. You may at 

first think that the bandwidth Δ𝑓 should be given by |𝑓2 − 𝑓1|, which is a decent approximation, but 

subject to corrections. For now assume Δ𝑓 = |𝑓2 − 𝑓1|. 

Measure the mean-square Johnson noise of the resistor, < 𝑉J
2(𝑡) >  for a range of (𝑓1, 𝑓2).  

Figure 7: Representation (left) of the transmission of a high-pass filter, of corner frequency 𝑓1; (center) of a low-pass filter, 
of corner frequency 𝑓2; (right) the combined effect of both filters. Graph axes are logarithmic 
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Make three plots of for your data 

a function of changing 𝑓1, (const 𝑓2) 

a function of changing 𝑓2  (const 𝑓1)  

a function of  𝑓2 − 𝑓1.  

ENBW 𝑓2 = 0.33kHz 1kHz 3.3kHz 10kHz 33kHz 100kHz 

𝑓1  =  10Hz 355 1100 3654 11096 36643 111061 

30 Hz 333 1077 3632 11074 36620 111039 

100 Hz 258 1000 3554 10996 36543 110961 

300 Hz 105 784 3332 10774 36321 110739 

1k Hz 9 278 2576 9997 35543 109961 

3k Hz 0.4 28 1051 7839 33324 107740 

These computed values are all subject to uncertainties of order 4% 
Also try plotting it as a function of the equivalent noise bandwidth (ENBW) given in the table above. 

Which plot is the most nearly linear?  

If your plot is consistent with < 𝑉J
2(𝑡) > ∝ Δ𝑓  then the coefficient of this proportionality tells you a 

‘noise power spectral density’, as you'll see in the next section. Its units are V2/Hz, and it's typically 

denoted by 𝑆. 

 

1.6 Johnson noise density, and Boltzmann's constant 

You have now seen how to measure noise, and have tested its dependence on source resistance and 

measurement bandwidth. This section introduce noise density, and relates your measured values, via 

Nyquist‘s formula, to the Boltzmann constant. 

If you have found that the measured mean-square noise < 𝑉J
2(𝑡) > has a linear dependence on the 

bandwidth Δ𝑓, then you have a ‘noise density’ that is uniform in frequency. Here's an analogy to mass 

density that should make this clear. Suppose you have a string, of unknown composition, laid out along 

the 𝑥-axis, and that you can make clean cuts at arbitrary locations 𝑥1 and 𝑥2, and then weigh the piece 

of string you've extracted. If (and only it) you find that the observed mass M is always proportional 

to|𝑥2 − 𝑥1|, you may conclude the string is of uniform density. You can also see that the quotient  

(mass 𝑀) / |𝑥2  −  𝑥1| 

gives the value for this density, given in units of mass per unit length. 

Similarly, if the mean-square noise < 𝑉J
2(𝑡) > is always proportional to the bandwidth Δ𝑓 you used 

to measure it, then you can define the ‘noise power density’ with a single number 

< 𝑉J
2(𝑡) > / Δ𝑓, 

in this case with units of Volts-squared per Hertz, or V2/Hz. [Strictly speaking, this is not a power 

density -- but if a voltage 𝑉(𝑡) is applied across a resistance 𝑅 then the quotient 𝑉2(𝑡)/𝑅 is a power. 

So the quotient above is just a factor-of-𝑅 away from being an actual power density, with units Watts 

per Hertz.]  

Your data for a single source resistance 𝑅 =  10 kΩ has given you a noise power density; you can go 

back to your data of Section 1.4 and convert that data to noise power density as well, to check the 

dependence-on-𝑅 of this density. How does your data compare to Nyquist‘s formula written as  

noise density 𝑆 = < VJ
2(𝑡) >/Δ𝑓 =  4𝑘B 𝑇𝑅 .  
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So you should plot all of your data thus far for various 𝑅- and Δ𝑓-values, to see if you can further 

establish the linear-in-𝑅 claim of the prediction above.  Do you see deviations from linear behaviour 

at large or small 𝑅 and Δ𝑓? Come back to this point after doing Sections 2 and 3. Are the deviations 

from linear behaviour explainable now? 

 If you establish a regime of linear dependence on 𝑅, your plot will give you a value for a slope, (4 𝑘B𝑇). 

What value does it have, (with units)? What uncertainty do you assign to your value?   

Now measure the room's temperature 𝑇 to find a value (and uncertainty) for Boltzmann's constant. 
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2. Noise Density 

2.0 Setting up to see a bandwidth 

A particular features of noise measurements (compared to other measurements you may have 

previously made) is that the signal measured depends on the bandwidth. You have seen earlier that 

the amount of Johnson-noise (in the ‘mean square’ sense) depends on the choices made for the 

difference between  𝑓1 and 𝑓2, the high-pass and low-pass corner frequencies. Here you will ignore 

the Johnson noise for a while and concentrate on the depiction of bandwidth.  

You should use the signal generator to drive the set of filters and plot a graph showing the gain-vs- 

frequency profile 𝐺(𝑓). 

A suitable cabling diagram for the system is 

shown in Figure 8. It requires only the filter 

sections of the high-level electronics. 

 

A suitable first choice of filter settings would 

be 𝑓1 = 1 kHz and 𝑓2 = 10 kHz. You can read 

the peak to peak height of the sine waves 

from the scope screen or use the built in 

measurement facility. Make sure you 

understand what the scope is measuring and 

what settings are suitable. 

 Now for any particular frequency, you can 

define the gain of the filter assembly as 

𝐺(𝑓)  =  [filter output signal] / [filter input signal] . 

For an arbitrary choice of  𝑓 read the scope and calculate 𝐺(𝑓). Is triggering on Ch1 the sensible choice, 

why?  

Notice that for a generic choice of frequency, the output signal will not be in phase with the input. 

Any “real-time” filtering system will have such phase shifts of output relative to input. In some 

experiments these phase shifts are important however here they are just a curiosity (and not part of 

the 𝐺(𝑓) definition above). Before moving on, sweep the frequency and observe how the phase shift 

changes as you go from below 𝑓1 to above 𝑓2. In words, or with a brief hand drawn sketch, note down 

the behaviour you have seen – no numbers required but LABEL YOUR AXES! (if you sketch something). 

 

It is also possible to measure the gain using a standard digital multimeter (DMM) to perform these 

rms measurements. Typically the specifications of true-rms a.c. voltmeters extend to 300 kHz, but you 

would need to check the specifications of your own meter. Briefly compare the scope and DMM 𝑉rms  

readings at low (~𝑓1), high (~𝑓2) and very high frequency – you only need to note anything down if 

the expected behaviour is not seen.  

 

Now measure 𝐺(𝑓) as a function of 𝑓 for filter settings of 𝑓1  = 1 kHz and 𝑓2 = 10 kHz. You should cover 

at least the range of 0.1kHz to 100 kHz.  

Figure 8: A cabling diagram for testing the action of combined filters 
on a test signal, 
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For (at least) one frequency, change the amplitude of the input signal and check if the output 

amplitude changes in proportion. This is (one) test that the filter is linear.  

In your plot, identify the high-pass corner near 𝑓1 and the low-pass corner near 𝑓2 . Also identify the 

‘pass band’ as the region in which the combined filter assembly gives 𝐺(𝑓)~ 1.  

You have used sine waves as test signals to be injected into your filter assembly, but is this valid for 

noise waveforms which are clearly not sine waves? The answer comes from the linearity property, 

which you tested (for single-frequency sine waves) above. Systems which are linear (or linear within a 

certain range) display another linearity property, in that:  

their response to a sum-of-inputs is equal to  

the sum of their responses to the inputs taken individually. 

 This is the same idea that allows Fourier decomposition. You can think of a noise waveform as being 

made up of (or, as analysable back into) a whole collection of sine waves, of all frequencies ranging 

from 𝑓 << 1 Hz to 𝑓 >> 1 MHz. The basic part of the linearity property is to understand the operation 

of the filter as  

            filter's output (when driven by noise) 
 = filter's output (when driven by a sum of sine waves) 
 = sum-of-(filter's output when driven by individual sine waves) 

 
That is to say, the filter's effect on a sum-of-inputs is the same as the sum of the (filter's effect on 

individual inputs). And the filter's response to individual sine waves is just what's described by the 

𝐺(𝑓) function you've already measured. Now it is clear that raw noise is composed of all frequencies, 

but that filtered noise has had its frequency content well below 𝑓1, and frequency content well above 

𝑓2, suppressed. Frequency content in the range 𝑓1 < 𝑓 < 𝑓2 is passed along with gain about 1, but 

frequencies outside the ‘pass band’ suppressed. 

If the ‘edges’ of the filter's response curve were perfectly sharp-edged corners, you would get a “brick 

wall” model 

gain factor = 1 for 𝑓1  < 𝑓 < 𝑓2 , but gain = 0 elsewhere. 

and the filter bandwidth Δ𝑓 would clearly be given by Δ𝑓 = |𝑓2 − 𝑓1|. As you have seen in your 𝐺(𝑓) 

plot, real filters do not have such sharp-edged characteristics. Like many filters the one used in the 

HLE box are optimized for predictability of performance, rather than sharpness of edge.  

 

It is convenient to approximate a more complicated smooth 

filter function as a simple rectangular pass band, the “brick 

wall” model and adjust the width of this model filter 

function so the integrated area under the gain curve match 

the real filter, see Fig 9.  

Looking at the gain curve of the filter from your last plot you 

can see it has a long ‘tail’ extending far above the nominal 

corner frequency. You may need to add a few frequencies 

to fill in gaps in your curve at this point. Calculate/Estimate 
Figure 9: 𝐺2(𝑓) for a typical low pass filter (solid line) and brick-
wall filter response of equivalent bandwidth (dashed line). 
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the area under your gain curve (note log plots do show areas equally) and so the ENBW for the filter 

given by 𝑓1 = 1 kHz and 𝑓2 = 10 kHz.   

Approximately what fraction of the area lies outside this ENBW? What is the fraction contained in the 

range 𝑓 > 4 × 𝑓2 and 𝑓 > 8 × 𝑓2? 

What might you conclude about the performance of circuit components well outside the intended 

frequency measurement window?  

 

3.  Johnson Noise comparison at two temperatures 

In this last section you will compare < 𝑉J
2(𝑡) > at two different temperatures, room temperature and 

liquid nitrogen temperatures. It is not practical to put the LLE box in nitrogen but an extension probe 

is provided with the same resistors as the LLE.  

Reconfigure the connections inside the LLE so that the ABC positions for 𝑅in of the preamp module 

connect to the A, B, C terminals of the temperature module. Connections in the variable temperature 

probe can be checked using the small breakout box. A temperature measurement diode and heater 

(both not used here) are connected at D1/2/H1/2. The three resistors are labelled accordingly. 

The resistors at the end of the probe are further away from the initial preamplifier and filtering circuits, 

this means longer cables which can pick up more external noise. The probe is carefully screened with 

a continuous metal shield but this adds capacitance between the resistor and preamplifier.  

Compare some rms noise values at a range of Δ𝑓 bandwidths (both small and large) to see the effect 

(if any) of the cable. If the added capacitance due to the probe was around 100pF at what frequency 

would you expect to notice a difference? Will measurements of all the resistors be affected equally? 

How would you suggest modifying the experiment to overcome or avoid this capacitance effect? 

When you have performed all your room temperature measurements (what is room temperature?) 

ask the tutor to collect nitrogen and fill the dewar then lower the probe into the glass dewar of 

nitrogen. It is only required to dip the thin brass spike into the nitrogen, (liquid nitrogen is not 

conductive but some of the components may not like the sudden thermal contraction if rapidly 

dunked.) After a relatively short time the bottom of the probe with all be at the same temperature as 

the liquid nitrogen, what temperature is this? 

Please note liquid nitrogen is obviously extremely cold and the probe dipped into it will also become 

very cold. Be particularly careful of metal parts to which your skin can become instantly stuck resulting 

in serious cold burns or frostbite. Freezing the water in most cells causes a lot of damage! 

Do your experimentally determined cold noise values fit the predicted temperature behaviour for 

Johnson noise, or more accurately the question should be “does the theory accurately describe the 

experiment” and are any differences  between your values and theory fit significant?  

* now return to the question at the end of section 1.6. Do the deviations from linear behaviour you 

observed in the noise density S make sense, explain your thoughts. 


